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In diverse branches of the national economy engi- 
neers and scientists are obliged to deal with the 
deformation and flow of various disperse systems-- 
suspensions, colloidal solutions, and pastes--in which 
solid particles are distributed in a liquid medium. In 
examing specific problems of flow of such materials 
in various technological processes, it is important 
to know the law relating the stresses acting on the 
system to its rate of flow. This kind of problem is the 
subject of rheology [l]--the science of the flow of 
matter. 

Dispersions of solids in liquids are complex two- 
or-more component systems, whose mechanical prop- 

erties are determined by the molecular forces acting 
between the components. The study of the molecular 
interactions is one of the problems of physicochemieal 

mechanics [2]--a new field of science formulated some 

ten or fifteen years ago at the interface of physics, 
chemistry, and materials science~ Rheology, which 

is part of physieochemieal mechanics, particularly 
in the mathematical description of the observed phe- 

nomena, usually restricts itself to purely phenome- 
nologieal methods of description, or examines only 
the main, important interactions between components, 
neglecting second-order and less significant interac- 

tions. 
Previous reviews have examined rheological studies 

of the plastico-viseous properties of disperse systems 
[3], as well as the general problems of rheology [4], 
connected with the study of structural-rheological 
parameters of colloidal-disperse systems. The pre- 
sent article is devoted to a more detailed examination 
of the properties of fluidity of dispersed solids in 
liquids, special attention being given to the effects of 

viscosity anomalies. 
The presence of solid particles in a liquid medium 

inhibits flow of the system. The viscosity of disper- 
sions of solid particles in a liquid is always greater 
than that of the dispersion medium. The increase of 
viscosity of the system with the addition of solid filler 
is due to two causes. First, the particles of the dis- 
perse phase play a purely passive role, occupying 
part of the volume of the medium, where there is no 

flow for this reason. At equal (macroscopic) shear 
rates, the actual shear rates in the mierovolumes 
of the liquid phase of the disperse system are greater 
than for the pure liquid. To create higher velocity 
gradients, even higher stresses are required, for 
which reason the viscosity of suspensions or of a 
colloidal solution proves to be larger than that of the 

pure solvent. Second, the liquid has a hydrodynamic 

resistance to relative displacement of particles of the 
solid phase, leading to additional energy dissipation 
and to a still further increase in the viscosity of the 
system. This second effect is particularly manifest 

for elongated particles. 
Investigation of phenomena of this kind is the pro- 

vince of a special section of rheology, called micro- 
rheology. The foundation of this field of knowledge was 
laid by A. Einstein in his doctoral thesis, the content 

of which has been published in [5]~ He solved the prob- 
lem of the influence of solid spherical inclusions on 
the viscosity of a liquid with small concentrations of 

solid phase. 
To evaluate the influence of the "thickening action" 

of the solid phase, on the basis of the formula obtained 
by Einstein in the papers cited, use is now made of 
the so-called characteristic viscosity [~7], determined 

by the equation 

[-r~l ~= ( q  - -  qo)/qo c, ( I )  

where ~ is the viscosity of the suspension, N0 is the 
viscosity of the dispersion medium, and c is the 
volume concentration of solid phase. For low concen- 
trations of solid phase, a/b = I does not depend on c, 
but only on the shape of the particles of the disperse 

phase. 

Fig. i. Flow of a Newtonian 
liquid. 

The problem of flow of a dispersion of ellipsoids 

of revolution with major axes a and b in a liquid 
medium, a problem similar to that of Einstein, was 

solved by Jeffrey, Eisenschitz, and Burgers [6]. 
They showed that if a/b -- I, then [77] = 2.5, as in 
Einstein's formula. With increase of the ratio a/b, 
the characteristic viscosity also increases. Thus, for 

example, when a/b = i0, [~] = 3.50; if a/b = i00, then 
[q] = I0. i; if a/b = i000, then [17] = 5-I, etc. Thus, 
the more elongated the particle, the more it increases 

the viscosity of the liquid. The problems of Einstein 
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and Je f f rey-Eisensch i tz -Burgers  were solved under 
the following assumptions. 

0 "r 

Fig. 2. Flow of a non-Newtonian 
liquid in the absence of viscous 
hysteres is  (ctg a = ~eff, ctg ~ = 

= ~m, ctg ~, = %). 

The whole volume of the liquid phase close to some 
solid particle is artificially divided into two regions. 
Near the particle, in the macroscopical ly  uniform 
shear  rate field, the flow will be microscopical ly  non- 
uniform because of the hydrodynamic interaction 
between the liquid and the particle.  This "disturbed" 
region, together with the solid particle itself, forms,  
according to Reiner [7], a so-cal led complex element. 
If we neglect a cer tain small e r ro r ,  then inside the 
range of this "complex element, " the part icle has no 
influence on the flow. The solutions of Einstein and 
Je f f rey-Eisensch i tz -Burgers  are valid for the case 
when the volumes of the "complex elements" do not 
overlap. This requirement  is satisfied only at very  
small  concentrations c. At higher concentrations the 
whole volume of the liquid is disturbed by the solid 
par t ic les ,  the volumes of the "complex elements" 
overlap,  and the character is t ic  visocosity [7] begins 
to increase with increase of c. 

It is assumed also that the liquid is not bound by 
par t ic les  of the solid phase. Binding of the liquid by 
solid part icles  may occur due to the phenomena of 
sorption, osmotic absorption, and purely mechanical  
immobilization, if the par t ic les  have cavities or  are 
coiled in spiral form. * When liquid is bound by par t i -  
cles of the solid material ,  the volume of the free liq- 
uid is reduced, the volume of the particles,  on the 
other hand, is increased,  and the character is t ic  v is -  
cosity increases  in comparison with its theoretical  
value. 

In accordance with what has been said about dis-  
pers ions  of solid par t ic les  in a liquid, a viscosi ty 
anomaly appears.  By an anomaly we understand a 
change (decrease) in the numerical  value of the v is -  
cosity with increase of shear rate. The viscosi ty 
anomaly is best  seen on the fluidity curves ,  with the 
x-axis  showing the shear s t ress  ~, and the y-axis- -  
the shear  rate ~ (Fig. 1). As is known, the visco-  
sity ~? = ctg ~, where ~ is the slope of the fluidity 

*See [8, 9] regarding the types of bond between the 
dispers ion medium and par t ic les  of the solid phase. 

curve with respect  to the x-axis.  For a Newtonian 
viscous liquid the viscosity 77 does not depend on the 
s t ress  and the shear rate. 

Dispersions of solid part icles in a liquid at not too 
high concentrations c have fluidity curves of the form 
shown in Fig. 2. Such systems have been called 
liquid-like [10, 11], i . e . ,  they do not noticeably dis-  
play any propert ies  of a solid body. It may be seen 
from Fig. 2 that the effective viscosity,  determined 
by the equation ~?eff = r / ~  = ctg ~, depends on the 
s t resses ,  as well as the shear rates.  At very low 
shear  rates (~ ~ 0), the initial viscosity has some 
maximum value %. With increase of shear  rate the 
viscosity decreases ,  and finally, for high enough ~, 
it takes a minimum value ~?m, the effective viscosity 
being independent of e and of T in a certain range (up 
to transition to turbulence). The viscosity anomaly 

;may be explained as follows. 
As was shown by Burgers  [6], the resis tance of 

an elongated particle to a liquid flow depends on the 
angle ~ between the direction of the principal shear 
rate and the major  axis of the particle.  If ~ = 0 ~ the 
particle has minimum resistance.  When q~ = 90, its 
resis tance is a maximum. The liquid s t ream tends to 
align the elongated particle so that its major  axis 
coincides with the principal shear  rate. This tendency 
is opposed by the thermal (Brownian) motion, which 
tends to disorient the particles.  In other words,  the 
Brownian motion promotes the more uniform dis tr i -  
bution of long part icles as regards direction. At 
small flow rates  the part icles are distributed almost 
uniformly as regards  directions in space, the forces 
of interaction between the liquid and the part icles  being 
insufficient for any noticeable orientation of par t ic les  
along the s t ream direction. Therefore,  at small  shear  
rates  the viscosity of the dispersion is relatively 
small.  At higher flow rates the part icles are oriented 
along the flow direction. Finally, at some cri t ical  
velocity, the forces of hydrodynamic resis tance in- 
c rease  to such an extent that they completely over-  
whelm the disorienting action of the Brownian motion, 
and all the elongated part icles  arrange themselves in 
the direction of the principal shear rate [12, 13]. 

0 

Fig. 3. Flow of a non-Newtonian 
liquid exhibiting viscous hys tere-  

sis. 

Further  increase of shear rate does not lead to any 
change of particle distribution as regards  direction, 
and therefore does not lead to an increase in effective 
viscosity.  Thus, for example, Volarovich and 
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Korchemkin [12] observed experimentally orientation 
of needle-shaped crys ta ls  of hematite suspended in 
an aegirine melt  during flow of the melt  in a tube. At 
the walls of the tube, where the velocity gradient was 
large enough, all the hematite crys ta ls  were oriented 
along the tube axis (and hence along the flow direction), 
while near  the center  of the tube, where e ~ 0, no 
orientation was observed. 

Certain long part icles  are broken up in a s tream. 
The fragments are c loser  in shape to a sphere than 
the original par t ic les ,  and therefore they have less 
res is tance to the liquid motion. Therefore the effec- 
tive viscosi ty diminishes with increase of velocity. 
If the flow of the system slows up or is curtailed alto- 
gether,  recombination of "secondary" part icles may 
occur.  However, this p rocess ,  if it does occur,  pro-  
ceeds slowly, and the system may exhibit decreased 
viscosi ty for  a long time. Then the fluidity curves 
exhibit viscous hysteres is ,  as depicted in Fig. 3, 
the width of the hys te res i s  loop depending on the rate 
of increase of shear  rate (i. e . ,  on the magnitude of 
e" ) and on its subsequent rate of decrease.  Viscous 
hys teres is ,  as in Fig. 3, was observed in [14] for 
lubricating oils at low temperatures .  

Liquid is partially adsorbed at the surface of 
lyophilic solid part icles  and is converted into bound 
liquid [8, 9]. Bound water ,  for example, possesses  
to some extent the propert ies  of a solid, part icular ly 
mechanical strength, and a ra ther  definite, measurable 
shear  modulus, falling off with the distance of the 
layer  examined from the surface of the solid [15, 16]. 
The strength of a bound liquid also rapidly drops with 
its distance from the adsorbing surface of a solid. 
At tow flow rates  the whole of the bound liquid be-  
haves as a solid body and does not move relative to 
the surface of the solid particle.  Thus, the volume 
of the liquid decreases ,  and the volume of the dis-  
persed phase increases ,  which leads to an increase 
of viscosi ty in comparison with its theoretical  value. 

o 

Fig. 4. Flow of a plast ico-  
viscous (Bingham) body 

(ctg ~ = Vp). 

Liquid immobilized by the internal cavities of par -  
ticles of the solid phase (or by the coils of spiral-  
shaped formations) also does not participate in the 
flow, which leads to an increase in the viscosity of 
the system in comparison with the theoretical  value. 

k ~ 6 , 

i 

1 _J 
0 T 

Fig. 5. Flow of a highly con- 
centrated dispersion of solid 
part icles  in a liquid: 1) with 
~'1 = const; 2--~" 2 < ~'1; 3--~'oo >> 
>> e'2; 4--e'0 << e'l; 5) under 
alternating acceleration; 
6) with s tructure broken down 

to the limit. 

Because of the action of s t resses  developing in the 
flow, part icles of the dispersed phase are deformed 
or  broken up. When part icles a r e  deformed, some 
part  of the immobilized liquid is squeezed out of them, 
as if from a sponge, and goes over into the free state. 
Breakdown of the weakest part icles  usually occurs  
along the cavities; here again a certain amount of 
immobilized liquid is set free. These processes  lead 
to reduction of the effective viscosity with increase 
of shear rate,  some hysteres is  again being observed. 

The viscosi ty anomaly is small  for negligible con- 
centration of solid mat te r  in the liquid, since then 
the viscosity of the system differs little f rom that of 
the solvent. The la rger  the concentration of solids, 
~the grea te r  the viscosity anomaly. At some inter-  
mediate concentrations the fluidity curves have the 
form shown in Fig. 4. There the fluidity in the initial 
section of the curve is only very  small and often 
cannot be observed by coarse  instruments.  It is there-  
fore assumed that the mater ia l  does not flow at 
s t resses  below a certain value 0 s" For  s t resses  
grea te r  than 0 s the fluidity becomes measurable,  
increasing rapidly with increase of s t ress .  Bingham 
[16] considers that the fluidity at s t resses  above the 
fluidity limit 0 s var ies  in straight- l ine fashion, and 
for  pure shear  is described by the equation 

~=Os-:qp~, (2) 

With increase of shear  ra te ,  the s t r e s ses  developing 
on the part icle  surface detach a certain amount of 
bound liquid and t r ans fo rm it to the free state. This 
phenomenon also leads to a reduction of effective vis-  
cosity. 

where ~p is a pa ramete r  called the plastic viscosi ty 
of the material .  Herschel  and Bulkley [18] considered 
that for the mater ia ls  investigated by them the fluidity 
curve is a parabola;  they also proposed a correspond-  
ing rheological equation. 
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The composition of disperse systems exhibiting a 
fluidity limit differs f rom that of systems having no 
such limit. The propert ies  of systems for which 0 s ~ 

0 are  reminiscent  of those of plastic solids. There-  
fore Rebinder [10, 11] called such systems solid-like, 
in distinction from liquid-like, for which 0 s = 0. 
Solid-like disperse systems have the composition of 
a gel (or gelatin), and liquid-like systems-- that  of a 
sol. In sols the individual part icles of the solid phase 
are separated by liquid phase and have no points of 
contact. There are no forces of molecular interaction 
between the solid part icles of a sol. In gels the solid 
part icles  form a three-dimensional  lattice structure.  
Neighboring part icles  have points of contact, where 
intermolecular  (interparticle) forces act. These are 
usually secondary forces  (Van der Waals). Thanks to 
its developed lattice structure,  a gel possesses  some 
fluidity limit. 

As has been shown in the work of Volarovich and 
Gutkin [19], systems of the sol type, in which the 
solid part icles represent  electric dipoles regularly 
distributed in the dispersion medium, may also 
possess  a fluidity limit. 

For  s t resses  below the fluidity limit, flow, even 
if it is observed, occurs  with negligible velocity. 
S t resses  high enough in comparison with the fluidity 
l imit cause breakdown of the gel lattice s tructure,  
leading to increase of the fluidity of the system. Here 
we encounter so-cal led thixotropic phenomena. 

Freundlich [20] understood thixotropy to be the 
isothermal  transit ion of a gel to a sol in the presence 
of mechanical  action on the sytem, and also the r e -  
verse  transit ion,  when the action is discontinued. At 
present  by thixotropy we understand a reduction of the 
mechanical  proper t ies  of the system upon mixing. 
Thus, if even as a resul t  of mechanical  action, the 
system still retains its plastic propert ies  (i. e . ,  is 
a gel), but its viscosi ty,  strength,  and fluidity limit 
decrease ,  it is considered that the decrease is con- 
nected with thixotropic phenomena. 

Thixotropy is the chief cause of hysteres is  loops 
in the fluidity curves of plastic disperse systems 
(Fig. 4). Because of thixotropie hysteresis  two fluidity 
limits are observed: a static 0 s and a dynamic 0 d. 
The static fluidity limit (limiting shear s t ress)  0 s may 
be determined by extrapolation to ~ = 0 the s t ra ight-  
line par t  of the fluidity curve for the original mater ia l ,  
without subjecting it to p r io r  shear  deformations 
(Fig. 4). The dynamic fluidity.limit 0 d in tersects  on 

�9 the x axis the extrapolated to e = 0 straight portion 
of the fluidity curve obtained for falling shear ra tes .  
As shown in [21], the static fluidity limit 0 s is always 
g rea te r  than the dynamic one 0 d" 

The plastic viscosi ty  is determined f rom the slope 
of the linear portion of the fluidity curve relative to 
the x-axis  for s t r e s ses  grea ter  than 0 s (or 0d}. 

Some substances,  called pseudoplastic bodies in 
[14], have a static limiting shear  s t ress  (0 s), but do 
not exhibit a dynamic limiting shear  s t r e ss  (8 d = 0). 

With fur ther  increase of the solids content of the 
sys tem,  its deformation and strength proper t ies  be-  

come still more complex. Whereas the anomalous- 
viscous and plast ico-viscous propert ies  of disperse 
systems at small concentrations may be investigated 
with the aid of instruments of various kinds in which 
a nonuniform s t r e s s - s t r a in  field is set up [17, 21, 22], 
for concentrated systems it is preferable to use 
instruments where the s t ress  field is practically uni- 
form. The most suitable for this purpose are rota-  
tional instruments with a narrow gap between the inner 
and outer cylinders [23, 24]. 

In these instruments the outer cylinder is rotated 
by means of an electric motor. The inner cylinder is 
suspended on a wire [24], which serves as a torsion 
dynamometer.  In the instrument described in [25], 
the "electric shaft" principle is used. 

Before testing, the disperse system is kept in the 
working element of the instrument for some time, to 
acquire a structure. When the instrument is switched 
on, the outer cylinder of the v iscometer  begins to 
move, f i rs t  accelerating, and then with constant velo- 
city. 

As a number of investigators [25-27] have shown, 
the start-up regime of the rotational instrument in 
operation has a considerable influence on the shape 
of the s t ress - t ime  curves for concentrated disperse 
sys tems,  since breakdown of the structure of the 
mater ia l  very often occurs  before the onset of steady- 
state flow. The stiffness of the dynamometer  [25-27] 
also has some influence on the shape of the theolo-  
gical curve,  in conditions where there is no special 
provision for compensating the deformation of the 
dynamometer  and for achieving a specified regime of 
deformation. Thus, the rate of growth of the shear  
rate ,  i . e . ,  the quantity ~", has an influence on the 
shape of the rheological curve of concentrated dis- 
perse  systems.  Therefore,  for drawing theological 
curves ,  the most  suitable regime of deformation, in 
our opinion, is 5" = const > 0 during growth of the 
shear  rate e up to e = ema x, and during the subse- 
quent decrease of a to zero at constant accelerat ion 
~" = const < 0. It should be noted that such a regime 
is realized in the McKennell instrument [28]. 

It may be seen from Fig. 5 that at the origin the 
s t resses  T are rapidly increasing, the rate of viscous 
deformation being completely insignificant. As the 
rate of deformation increases ,  the rate of growth of 
the s t resses  slows down. Starting with the point At, 
the s t resses  begin to fall, this being due to breakdown 
of the s tructure of the material .  Then with fur ther  
growth of shear rate ,  the s t r e s ses  again begin to in- 
crease ,  due to the viscous res is tance of the d isper-  
sion medium. The flow curve then reaches section 6, 
corresponding to limiting s t ructure  breakdown. This 
section is not usually observed,  since either turbu-  
lence sets in beforehand, or  breakdown of the con- 
tinuity of the system occurs.  There is no certainty 
that its continuation into the low ~ region passes  
through the origin of coordinates (see Fig. 10 in [29]), 
just as it is not certain that the family of fluidity 
curves obtained at different ~" values merge  into a 
single curve in section 6. At higher accelerat ion,  for  
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example, at a'2 < el, the form of the flow curve changes 
as shown by curve 2 of Fig. 5. The abscissas of the 
extreme right points A t and A2 may be taken as the 
limits of the strength of the system (see [30]), which 
prove to be dependent on time. The time dependence 
of the strength of concentrated dispersed systems was 
observed in [31, 33]. 

At very  high accelerations e" the fluidity curve 
apparently has the form shown in the figure by curve 
3. At very  low accelerations ~" the fluidity curve is 
represented in Fig. 5 by curve 4. At very low accel-  
erations "~, and possibly also at very high ~', the 
s t resses  T increase monotonically. 

It should be noted that for highly concentrated sys-  
tems,  in order  to obtain a monotonic charac ter  of 
the fluidity curve,  it is necessary  to use accelera-  
tions "e or  velocities ~ so low that they are practically 
impossible to achieve [27]. In section 6 all the curves 
obtained at various values ~" merge  into a single line. 
If the rate of deformation ~ were to increase,  and then 
begin to drop, the fluidity curve would have the form 
represented by curve 5 of Fig. 5. The shaded hys ter -  
esis  loop is associated with energy loss in breaking 
down the s t ructure  of the material .  

According to contemporary opinion [33, 34], the 
res is tance of a concentrated disperse system to the 
action of external forces is equal to the sum of the 
viscous res is tance of the dispersion medium and the 
res is tance of the s t ructure  of the material .  The r e -  
sistance of the lat ter  is the la rger ,  the more  developed 
the structure.  When external forces  act on the sys-  
tem, the gel s t ructure  begins to be broken down, the 
breakdown process  proceeding with time. The rate 
of breakdown of the gel s t ructure is the greater ,  the 
higher the s t resses  acting. The breakdown process ,  
in the opinion of Billington [33, 34] and of the authors 
of [31, 32], conforms to the theory of absolute r eac -  
tion rates [35, 36]. 

A somewhat different point of view is expressed 
in [37]. To describe the propert ies  of disperse and 
high-molecular  sys tems,  s imilar  to those repre -  
sented in Fig. 5, use is made of a generalized Max- 
well model containing a set of relaxation times. When 
large enough s t resses  act on an individual Maxwell 
element in this model,  breakdown occurs ,  where-  
upon the load is redistr ibuted among the undamaged 
elements. 

It may be seen from Fig. 5 that the system behaves 
as a plast ico-viscous body only in cases  3, 4, and 5. 
There the fluidity curves  r i se  upwards so steeply that 
it is impossible to determine the plastic viscosi ty of 
the system. In any case it is many orders  below the 
viscosi ty of the intact sys tem,  and many times be-  
low the viscosi ty of the limiting breakdown system. 
Therefore  the idea of plastic viscosi ty becomes 
meaningless for concentrated disperse systems.  

Fluidity curves s imi lar  in shape to those presented 
in Fig. 5 were also obtained for certain h igh-mole-  
cular compounds in [38]. 

With fur ther  increase in the content of solids in 
the disperse  system,  the entire liquid passes  into the 

bound state. It is no longer a free liquid, and under 
the action of high s t resses  the system suffers britt le 
fracture [39]. 
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